Index Theory and Non-commutative Geometry Ii. Dirac Operators and Index Bundles

نویسنده

  • JAMES L. HEITSCH
چکیده

When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define its Chern character in Haefliger cohomology and relate it to the Chern character of the K−theory index. This result gives a concrete connection between the topology of the foliation and the longitudinal index formula. Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Atiyah-patodi-singer Index Theorem for Dirac Operators over C∗-algebras

We prove an Atiyah-Patodi-Singer index theorem for Dirac operators twisted by C-vector bundles. We use it to derive a general product formula for η-forms and to define and study new ρ-invariants generalizing Lott’s higher ρ-form. The higher Atiyah-Patodi-Singer index theorem of LeichtnamPiazza can be recovered by applying the theorem to Dirac operators twisted by the Mishenko-Fomenko bundle ass...

متن کامل

Quasi-Dirac Operators on the Sphere

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find quasi-Dirac operators and calculate the index paring with a representant of K-theory class to prove that the quasispectral triples are mutually inequivalent. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Local Index Theory for Certain Fourier Integral Operators on Lie Groupoids

We develop a local index theory, in the sense of non-commutative geometry, for operators associated to non-proper and non-isometric actions of Lie groupoids on smooth submersions.

متن کامل

Cut-and-paste on Foliated Bundles

We discuss the behaviour of the signature index class of closed foliated bundles under the operation of cutting and pasting. Along the way we establish several index theoretic results: we define Atiyah-Patodi-Singer (≡ APS) index classes for Dirac-type operators on foliated bundles with boundary; we prove a relative index theorem for the difference of two APS-index classes associated to differe...

متن کامل

An Index Theorem for Families of Elliptic Operators Invariant with Respect to a Bundle of Lie Groups

We define the equivariant family index of a family of elliptic operators invariant with respect to the free action of a bundle G of Lie groups. If the fibers of G → B are simply-connected solvable, we then compute the Chern character of the (equivariant family) index, the result being given by an Atiyah-Singer type formula. We also study traces on the corresponding algebras of pseudodifferentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007